Mecanismos neuroinvasivos y del daño neurológico en las infecciones por coronavirus

Autores/as

  • Héctor Rafael Céspedes Rodríguez Instituto do Coraçao Moçambique https://orcid.org/0000-0003-2632-3337
  • Dania de Jesús Rodríguez Bencomo
  • Héctor Alejandro Céspedes Rodriguez
  • Rafael Antonio Céspedes Rodríguez

Resumen

Introducción: En diciembre de 2019, en China, se reportaba un nuevo coronavirus, que se clasificó y denominó como síndrome respiratorio agudo severo-coronavirus 2, causante de la enfermedad COVID-19; capaz de provocar síntomas y complicaciones neurológicas.

Objetivo: Describir los mecanismos neuroinvasivos y del daño neurológico en las infecciones por coronavirus.

Métodos: De las bases datos PubMed, SciELO y Latindex, se seleccionaron artículos publicados desde 2005 hasta mayo de 2020 que trataran: la lesión neurológica directa, la lesión neurológica indirecta y los mecanismos de la muerte neuronal en las infecciones por coronavirus. Se incluyeron estudios en humanos, animales de experimentación y estudios in vitro.

Resultados: Las propiedades neuroinvasivas de los coronavirus está demostrada, pero la fisiopatología que media la neuroinvasión y el daño neurológico en la infección por SARS-CoV-2 no está totalmente aclarada. Las propiedades neurotrópicas del nuevo coronavirus, se demostraron por la presencia del virus en líquido cefalorraquídeo y cerebro. Los mecanismos que explican el daño neurológico están presentes en los pacientes con formas graves de la COVID-19 y justifican las manifestaciones clínicas y complicaciones neurológicas de la enfermedad.

Consideraciones finales: Los coronavirus son neuroinvasivos y neurotrópicos, con potencialidad para provocar enfermedad neurológica. Las hipótesis fisiopatológicas indican que las manifestaciones en el sistema nervioso se deben a causas inflamatorias. Se necesitan estudios a nivel biomolecular para aceptar o refutar tales teorías. Esto ayudaría a clasificar mejor todo el espectro de la neuropatología y elaborar un consenso sobre las mejores estrategias de diagnóstico y modalidades de tratamiento.

Palabras claves: COVID-19, SARS-CoV-2, neuroinvasión, neurotropismo, daño neurológico, coronavirus.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17, 181–192. https://doi.org/10.1038/s41579-018-0118-9

2. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 2016; 24: 490-502. http://dx.doi.org/10.1016/j.tim.2016.03.003

3. Zhong NS, Zheng BJ, Li YM, Poon L L M, Xie Z H, Chan K H et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003. Lancet 2003;362:1353-1358. https://doi.org/10.1016/S0140-6736(03)14630-2

4. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012; 367: 1814-1820. DOI:10.1056/NEJMoa1211721

5. Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 2020; 27:325-328. https://doi.org/10.1016/j.chom.2020.02.001

6. Ng Kee Kwong KC, Mehta PR, Shukla G, Metha A R. COVID-19, SARS and MERS: A neurological perspective. Journal of Clinical Neuroscience. 2020, https://doi.org/10.1016/j.jocn.2020.04.124

7. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 2020; 172(9):577–582. https://doi.org/10.7326/M20-0504

8. Wang Y, Kang H, Liu X, Tong Z. Combination of RT-qPCR testing and clinical features for diagnosis of COVID-19 facilitates management of SARS-CoV-2 outbreak. J Med Virol 2020; 92:538–539. https://doi.org/10.1002/jmv.25721

9. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020; 395;(10223),pp. 497-506 doi: 10.1016/S0140-6736(20)30183-5

10. Jiang F, Deng L, Zhang L, Cai Y, Cheung C W, Xia Z. Review of the Clinical Characteristics of Coronavirus Disease 2019 (COVID-19). J Gen Intern Med 2020; 35(5): 1545 – 1549. DOI: 10.1007/s11606-020-05762-w

11. Du Y Z, Tu L, Zhu P, Mu M, Wang R, Yang P et al. Clinical Features of 85 Fatal Cases of COVID-19 from Wuhan A Retrospective Observational Study. Am J Respir Crit Care Med 2020; 201(11), 1372 – 1379. https://doi.org/10.1164/rccm.202003-0543OC

12. Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun. 2020 https://doi.org/10.1016/j.bbi.2020.03.031

13. Azhideh A. COVID-19 Neurological Manifestations. Int Clin Neurosci J. 2020; 7(2):54. https://doi.org/10.34172/icnj.2020.01

14. Xiang P, Xu X M, Gao L L, Wang H Z, Xiong H F, Li R H, et al. First case of 2019 novel coronavirus disease with Encephalitis. ChinaXiv 2020: T202003, 00015.

15. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020 https://doi.org/10.1021/acschemneuro.0c00122

16. Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dube M, Talbot PJ. Human Coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses 2019. https://doi.org/10.3390/ v12010014

17. Michalicova A., Bhide K., Bhide M., Kovac A. How viruses infiltrate the central nervous system. Acta Virol. 2017; 61 (4), 393–400. https://doi.org/10.4149/av_2018_102

18. Al-Obaidi, M.M.J., Bahadoran, A., Wang, S.M., Manikam, R., Raju, C.S., Sekaran, S.D. Disruption of the blood brain barrier is vital property of neurotropic viral infection of the central nervous system. Acta Virol. 2018; 62 (1), 16–27. doi:10.4149/av_2018_102

19. Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, et al. Guillain–Barré syndrome associated with SARS-CoV-2. N Engl J Med 2020 Apr17 [Epub ahead of print]. doi:10.1056/NEJMc2009191

20. Li Y., Li H., Fan R., Wen B., Zhang J., Cao X., et al. Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children. Inter virology. 2016; 59: 163–169. https://doi.org/10.1159/000453066

21. Bohmwald K, Gálvez NMS, Ríos M, et al. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci 2018;12: 386. https://doi.org/10.3389/fncel.2018.00386

22. Swanson PA and, McGavern DB. Viral diseases of the central nervous system. Curr Opin Virol. 2015; 11:44–54. https://doi.org/10.1016/j.coviro.2014.12.009

23. Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res. 2014; 194:145–158. https://doi.org/10.1016/j.virusres. 2014.09.011

24. Dahm T, Rudolph H, Schwerk C, Schroten H, Tenenbaum T. Neuroinvasion and inflammation in viral central nervous system infections. Mediators Inflamm 2016. https://dx.doi.org/10.1155/2016/8562805

25. Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, Zou W, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005; 202(3):415–424. https://doi.org/10.1084/jem.20050828

26. van Riel D, Verdijk R, Kuiken T. The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol. 2015; 235(2):277–287. https ://doi.org/10.1002/path.4461

27. Giacomelli A, Pezzati L, Conti F, Bernacchia D, Siano M, Oreni L, Rusconi S, et al. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross-sectional study. Clin Infect Dis. 2020 https ://doi.org/10.1093/cid/ciaa3 30

28. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Oto-Rhino-Laryngol. 2020 https ://doi.org/10.1007/s0040 5-020-05965-1

29. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may be at least partially responsible for the respiratory failure of COVID-19 patients. J Med Virol. 2020 https://doi.org/10.1002/jmv.25728

30. Iroegbu JD, Ifenatuoha CW, Ijomone OM. Potential neurological impact of coronaviruses: implications for the novel SARS-CoV-2. Neurological Sciences. 2020 https://doi.org/10.1007/s10072-020-04469-4

31. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008; 82(15):7264–7275

32. Jacomy H, Fragoso G, Almazan G, Mushynski WE, Talbot PJ. Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology. 2006; 349(2):335–346

33. Filatov A, Sharma P, Hindi F, Espinosa PS. Neurological complications of Coronavirus disease (COVID-19): encephalopathy. Cureus 2020; 12(3):e7352. https://doi.org/ 10.7759/cureu s.7352

34. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, H1h Across Speciality Collaboration UK. COVID- 19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229):1033–1034. https://doi.org/10.1016 /S0140-6736(20)30628-0

35. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020 https ://doi.org/10.1148/radio l.20202 01187

36. Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barre syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol. 2020; 19(5):383–384. https://doi. org/10.1016/S1474 -4422(20)30109-5

37. Al Saiegh F, Ghosh R, Leibold A, Avery MB, Schmidt RF, Theofanis T, Mouchtouris N, et al. Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke. J Neurol Neurosurg Psychiatry. 2020 https://doi.org/10.1136/jnnp-2020-32352 2

38. Abdennour, L., Zeghal, C., Deme, M., Puybasset, L. Interaction brain-lungs. Ann Fr Anesth Reanim 2012; 31 (6): e101-107.

39. Herridge MS, Moss M, Hough CL, Hopkins RO, Rice TW, Bienvenu OJ, Azoulay E. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers. Intensive Care Med. 2016; 42(5):725–738

40. Zhang Y, Geng X, Tana Y, Lic Q, Xua C, Xua J, et al. New understanding of the damage of SARS-CoV-2 infection outside the respiratory system. Biomedicine & Pharmacotherapy 127 (2020) 110195 https://doi.org/10.1016/j.biopha.2020.110195

41. Klein R S, Garber C, Howard N. Infectious immunity in the central nervous system and brain function. Nat. Immunol. 2017; 18 (2): 132–141.

42. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J. Clin. Invest. 2020. https://doi.org/10.1172/JCI137244

43. Chen, T., Wu, D., Chen, H., Yan, W., Yang, D., Chen, G., et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020 368, m1091. https://doi.org/10.1136/bmj.m1091

44. Wan S X, Yi Q J, Fan S B, Lu J L., Zhang X X, Guo L, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). MedRxiv 2020.02.10.20021832.

45. Wheeler D L, Sariol A, Meyerholz D K, Perlman S. Microglia are required for protection against lethal coronavirus encephalitis in mice. J. Clin. Invest. 2018; 128,931–943. https://doi.org/10.1172 / JCI97229

46. Ijomone OM, Olatunji SY, Owolabi JO, Naicker T, Aschner M. Nickel-induced neurodegeneration in the hippocampus, striatum and cortex: an ultrastructural insight, and the role of caspase-3 and α-synuclein. J Trace Elem Med Biol 2018; 50:16–23

47. Zhiqiang Zhou, Huicong Kang, Shiyong Li, Xu Zhao. Understanding the neurotropic characteristics of SARS‑CoV‑2: from neurological manifestations of COVID‑19 to potential neurotropic mechanisms. Journal of Neurology 2020 https://doi.org/10.1007/s00415-020-09929-7

48. Zhang X, Wu K, Wang D, Yue X, Song D, Zhu Y, Wu J. Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-κB. Virology 2007; 365(2): 324–335

49. Serrano-Castro PJ, Estivill-Torrús G, Cabezudo-García P, Reyes-Bueno JA, Ciano Petersen N, Aguilar-Castillo MJ, et al. Influencia de la infección SARS-CoV-2 sobre enfermedades neurodegenerativas y neuropsiquiátricas: ¿una pandemia demorada? Neurología. 2020. https://doi.org/10.1016/j.nrl.2020.04.002

Descargas

Publicado

2020-07-03

Cómo citar

1.
Céspedes Rodríguez HR, Rodríguez Bencomo D de J, Céspedes Rodriguez HA, Céspedes Rodríguez RA. Mecanismos neuroinvasivos y del daño neurológico en las infecciones por coronavirus. Rev Cubana Pediatría [Internet]. 3 de julio de 2020 [citado 5 de julio de 2025];92. Disponible en: https://revpediatria.sld.cu/index.php/ped/article/view/1203

Número

Sección

Artículos de revisión