Artificial Intelligence as a Necessary Development Tool in Pediatrics and Pediatric Intensive Care
Keywords:
artificial intelligence, tool, pediatric and neonatal intensive care.Abstract
Introduction: Artificial intelligence is a tool used in neonatal and pediatric intensive care units. It should complete the experience and clinical judgment of health professionals, based on ethical and competency principles, but it should never replace them. Objective: To update knowledge about the tools provided by artificial intelligence in the performance of the specialties of pediatrics and pediatric and neonatal intensive care, as well as the limitations of its use. Methods: A documentary review of the English and Spanish literature published in the last five years was carried out. The Google Scholar search engine was used. Fifty freely accessible articles were consulted in PubMed, SciELO, Lilacs, Cumed and Hinari databases. Twenty-three of them were used. Results: Artificial intelligence is an important instrument for improving the provision of health services, but it still has limitations. Although some advantages are reported, the evaluation of artificial intelligence systems in pediatric and neonatal intensive care reflects that most models do not qualify for implementation because they are in early stages of development and are subject to error. Conclusions: Although some professionals remain skeptical, technological development that goes hand in hand with social development cannot be ignored. What is primordial is preventing healthcare personnel from becoming insensitive in the face of their primary goal of healing.Downloads
References
1. Ávila-Tomás JF, Mayer-Pujadas MA, Quesada-Varela VJ. La inteligencia artificial y sus aplicaciones en medicina II: Importancia actual y aplicaciones. Aten Primaria. 2021;53(1):81-8. DOI: https://doi.org/10.1016/j.aprim.2020.04.014
2. Organización Mundial de la Salud. Ética y gobernanza de la inteligencia artificial en el ámbito de la salud: orientaciones de la OMS; 2021 [acceso 24/04/2023]. Disponible en: https://www.who.int/es/publications/i/item/9789240037403
3. Lanzagorta-Ortega D, Carrillo-Pérez DL, Carrillo-Esper R. Inteligencia artificial en medicina: presente y futuro. Gac Med Mex. 2022;158(1):17-21. DOI: https://doi.org/10.24875/GMM.M22000688
4. Paycha F. Diagnosis with the aid of artificial intelligence: Demonstration of the 1st diagnostic machine. Presse Therm Clim. 1968;105:22-5. Disponible en: https://pubmed.ncbi.nlm.nih.gov/4910364/
5. Shortliffe EH, Davis R, Axline SG, Buchanan BG, Green CC, Cohen SN. Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system. Compute Biomed Res. 1975;8(4):303-20. DOI: https://doi.org/10.1016/0010-4809(75)90009-9
6. Galdo B, Pazos C, Pardo J, Solar A, Llamas D, Fernández-Blanco E. Inteligencia artificial en pediatría: actualidad y retos, en pediatría. Anales de Pediatría. 2024;100:195-201. DOI: https://doi.org/10.1016/j.anpedi.2024.02.006
7. Nimri R, Battelino T, Laffel LM, Slover RH, Schatz D, Weinzimer SA, et al. Insulin dose optimization using an automated artificial intelligence-based decision support system in youths with type 1 diabetes. Nat Med. 2020;26(9):1380-4. DOI: https://doi.org/10.1038/s41591-020-1045-7
8. Voss C, Schwartz J, Daniels J, Kline A, Haber N, Washington P, et al. Effect of wearable digital intervention for improving socialization in children with autism spectrum disorder: A randomized clinical trial. JAMA Pediatr. 2019;173:446-54. DOI: https://doi.org/10.1001/jamapediatrics.2019.0285
9. Yang RL, Yang YL, Wang T, Xu WZ, Yu G, Yang JB, et al. Establishment of an auxiliary diagnosis system of newborn screening for inherited metabolic diseases based on artificial intelligence technology and a clinical trial. Zhonghua Er KeZaZhi. 2021;59:286-93. DOI: https://doi.org/10.3760/cma.j.cn112140-20201209-01089
10. Medina R, Bouhaben J, de Ramón I, Cuesta P, Antón-Toro L, Pacios J, et al. Electrophysiological brain changes associated with cognitive improvement in a pediatric attention deficit hyperactivity disorder digital artificial intelligence-driven intervention: Randomized controlled trial. J Med Internet Res. 2021;23(11). DOI: https://doi.org/10.2196/25466
11. Onu CC, Udeogu I, Ndiomu E, Kengni U, Precup D, Sant’Anna GM, et al. Ubenwa: Cry-based Diagnosis of Birth Asphyxia. ArXiv. 2017. DOI: https://doi.org/10.48550/arXiv.171.06405
12. Si Y. Machine learning applications for electroencephalograph signals in epilepsy: A quick review. Acta Epileptol. 2020;2:5. DOI: https://doi.org/10.1186/s42494-020-00014-0
13. Mani S, Ozdas A, Aliferis C, Varol HA, Chen Q, Carnevale R, et al. Medical decision support using machine learning for early detection of late-onset neonatal sepsis. J Am Med Inform Assoc. 2014;21:326-36. DOI: https://doi.org/10.1136/amiajnl-2013-001854
14. Masino AJ, Harris MC, Forsyth D, Ostapenko S, Srinivasan L, Bonafide C, et al. Machine learning models for early sepsis recognition in the neonatal intensive care unit using readily available electronic health record data. PLoS One. 2019;14. DOI: https://doi.org/10.1371/journal.pone.0212665
15. Verder H, Heiring C, Clark H, Sweet D, Jessen TE, Ebbesen F, et al. Rapid test for lung maturity, based on spectroscopy of gastric aspirate, predicted respiratory distress syndrome with high sensitivity. Acta Paediatr. 2017;106:430-7. DOI: https://doi.org/10.1111/apa.13683
16. Ales Jiménez R. Inteligencia artificial. Desafíos y preocupaciones. Rev Pediatr Aten Primaria. 2023 [acceso 24/03/2024];25:205-10. Disponible en: https://pap.es/articulo/13954/inteligencia-artificial-desafios-y-preocupaciones
17. Straub J. In search of technology readiness level (TRL) 10. Aerosp Sci Technol. 2015;46:312-20. DOI: https://doi.org/10.1016/j.ast.2015.07.007
18. Beunzaa JJ, Lafuentea JL, González S, Gómez-Telloa V. Inteligencia artificial e Internetof Medical Things en UCI: momento de la implementación. Medicina Intensiva. 2024;48(1):56-8. DOI: https://doi.org/10.1016/j.medin.2023.10.002
19. González M, Martínez D. Dilemas éticos en el escenario de la inteligencia artificial. Economía y Sociedad. 2020;25(57):93-109. DOI: https://doi.org/10.15359/eys.25-57.5
20. Johnson KB, Wei WQ, Weeraratne D, Frisse ME, Misulis K, Rhee K, et al. Precision Medicine, AI, and the Future of Personalized Health Care. Clin Transl Sci. 2021;14(1):86-93. DOI: https://doi.org/10.1111/cts.12884
21. Naik N, Hameed BMZ, Shetty DK, Swain D, Shah M, Paul R. Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Front Surg. 2022;9. DOI: https://doi.org/10.3389/fsurg.2022.862322
22. Inglada L, Corral L, Miramontes P. Ética e inteligencia artificial. Rev Clín Esp. 2024;224(3):178-86. Doi: https://doi.org//10.1016/j.rce.2024.01.007
Downloads
Published
How to Cite
Issue
Section
License
Avisos de derechos de autor propuestos por Creative Commons
1. Política propuesta para revistas que ofrecen acceso abierto
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).